(1)取AD中点E,连接ME,NE,结合已知条件,由三角形中位线定理可得ME∥PD,NE∥CD,由面面平行的判定定理易判断出平面MNE∥平面PCD,再由面面平行的判定定理得到MN∥平面PCD;
(2)由已知中底面ABCD是正方形,PD⊥底面ABCD,结合正方形的性质及线面垂直的性质,可得AC⊥BD,PD⊥AC,由线面垂直的判定定理得AC⊥平面PBD,再由面面垂直的判定定理可得平面PAC⊥平面PBD;
(3)由已知中PD⊥平面ABCD,所以PD为三棱锥P-ABC的高,求出棱锥的底面面积和高的长度,代入棱锥体积公式,即可得到答案.
【解析】
(1)证明:取AD中点E,连接ME,NE,
由已知M,N分别是PA,BC的中点,
∴ME∥PD,NE∥CD
又ME,NE⊂平面MNE,ME∩NE=E,
所以,平面MNE∥平面PCD,(2分)
所以,MN∥平面PCD(4分)
(2)ABCD为正方形,
所以AC⊥BD,
又PD⊥平面ABCD,所以PD⊥AC,(6分)
所以AC⊥平面PBD,(8分)
所以平面PAC⊥平面PBD(10分)
(3)PD⊥平面ABCD,所以PD为三棱锥P-ABC的高
三角形ABC为等腰直角三角形,
所以三棱锥P-ABC的体积(13分)