满分5 > 高中数学试题 >

已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为. (Ⅰ)求椭...

已知椭圆C:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,短轴一个端点到右焦点的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为manfen5.com 满分网,求△AOB面积的最大值.
(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程. (Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m. 由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0,然后由根与系数的关系进行求解. 【解析】 (Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为. (Ⅱ)设A(x1,y1),B(x2,y2). (1)当AB⊥x轴时,. (2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m. 由已知,得. 把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0, ∴,. ∴|AB|2=(1+k2)(x2-x1)2 = = = = =. 当且仅当,即时等号成立.当k=0时,, 综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值.
复制答案
考点分析:
相关试题推荐
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的大小;
(3)求点C到平面A1BD的距离.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)设E是DC的中点,求证:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.
查看答案
中心在原点,一个焦点为F1(0,manfen5.com 满分网)的椭圆截直线y=3x-2所得的弦的中点的横坐标为manfen5.com 满分网,求椭圆的方程.
查看答案
在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是D1D,BD的中点,G在棱CD上,且manfen5.com 满分网,H为C1G的中点,应用空间向量方法求解下列问题.
(1)求证:EF⊥B1C;
(2)求EF与C1G所成的角的余弦;
(3)求FH的长.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,A、B分别为直线x+y=2与x、y轴的交点,C为AB的中点、若抛物线y2=2px(p>0)过点C,求焦点F到直线AB的距离.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.