已知函数f(x)=
(a≥0),f′(x)为函数f(x)的导函数.
(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是y=3x-3,求a,b的值;
(Ⅱ)若函数g(x)=e
-ax•f′(x),求函数g(x)的单调区间.
考点分析:
相关试题推荐
如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(Ⅰ)求证:BC⊥BE;
(Ⅱ)求正方形ABCD的边长;
(Ⅲ)求直线EF与平面ABF所成角的正弦值.
查看答案
某菜园要将一批蔬菜用汽车从城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.若菜园恰能在约定日期(×月×日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 汽车 行驶路线 | 不堵车的情况下到达亚运村乙所需时间(天) | 堵车的情况下到达亚运村乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路1 | 2 | 3 | 0.1 | 1.6 |
公路2 | 1 | 4 | 0.5 | 0.8 |
( 注:毛利润=销售商支付给菜园的费用-运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为ξ(单位:万元),求ξ的分布列和数学期望Eξ;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
查看答案
如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且
,∠AOB=α,∠AOP=θ(0<θ<π),
,四边形OAQP的面积为S.
(Ⅰ)求cosα+sinα;
(Ⅱ)求
的最大值及此时θ的值θ
.
查看答案
(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(1)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
(2)已知方程|2
x-1|-|2
x+1|=a+1有实数解,则a的取值范围为
.
查看答案
设M是由满足下列性质的函数f(x)构成的集合:在定义域内存在x
,使得f(x
+1)=f(x
)+f(1)成立.已知下列函数:①
;②f(x)=2
x;③f(x)=lg(x
2+2);④f(x)=cosπx,其中属于集合M的函数是
(写出所有满足要求的函数的序号).
查看答案