满分5 > 高中数学试题 >

设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M...

设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.
(1)由f(0)=2得到c的值,集合A的方程可变为f(x)-x=0,因为A={1,2},得到1,2是方程的解,根据韦达定理即可求出a和b,把a、b、c代入得到f(x)的解析式,在[-2,2]上根据函数的图象可知m和M的值. (2)由集合A={1},得到方程f(x)-x=0有两个相等的解都为1,根据韦达定理求出a,b,c的关系式,根据a大于等于1,利用二次函数求最值的方法求出在[-2,2]上的m和M,代入g(a)=m+M中得到新的解析式g(a)=9a--1,根据g(a)的在[1,+∞)上单调增,求出g(a)的最小值为g(1),求出值即可. 【解析】 (1)由f(0)=2可知c=2, 又A={1,2},故1,2是方程ax2+(b-1)x+c=0的两实根. ∴,解得a=1,b=-2 ∴f(x)=x2-2x+2=(x-1)2+1, 因为x∈[-2,2],根据函数图象可知,当x=1时, f(x)min=f(1)=1,即m=1; 当x=-2时,f(x)max=f(-2)=10,即M=10. (2)由题意知,方程ax2+(b-1)x+c=0有两相等实根x1=x2=1, 根据韦达定理得到:,即, ∴f(x)=ax2+bx+c=ax2+(1-2a)x+a,x∈[-2,2]其对称轴方程为x==1- 又a≥1,故1- ∴M=f(-2)=9a-2 m= 则g(a)=M+m=9a--1 又g(a)在区间[1,+∞)上为单调递增的,∴当a=1时,g(a)min=
复制答案
考点分析:
相关试题推荐
设f(x)的定义域是(-∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(-x)=-f(x).已知当x>0时manfen5.com 满分网
(1)求当x<0时,f(x)的解析式   (2)解不等式manfen5.com 满分网
查看答案
给定两个命题,命题p:对任意实数x都有ax2+ax+1>0恒成立,命题q:关于x的方程x2-x+a=0有实数根,如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
已知集合A={x|(x-2)[x-(3a+1)]<0},manfen5.com 满分网
(Ⅰ) 当a=2时,求A∩B;
(Ⅱ) 求使B⊆A的实数a的取值范围.
查看答案
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值    查看答案
若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.