(1)由已知中PB⊥底面ABC,∠BAC=90°;我们易得PB⊥AC且AC⊥AB,由线面垂直的判定定理可得,AC⊥面PAB;
(2)由(1)的结论由线面垂直的性质,可得AC⊥BE,结合已知中过点B作BE,BF分别垂直于AP,CP于点E,F,由线面垂直的判定定理和性质定理,我们依次可证得BE⊥平面PAC,PC⊥平面BEF,最后再由线面垂直的性质得到PC⊥EF.
【解析】
(1)∵PB⊥底面ABC,AC⊂平面ABC
∴PB⊥AC
又∵∠BAC=90°;
∴AC⊥AB
又PB∩AB=B
∴AC⊥面PAB;
(2)由(1)的结论,由BE⊂平面PAB
∴AC⊥BE,又由BE⊥AP,AC∩AP=A
∴BE⊥平面PAC
∴BE⊥PC
∵BF⊥PC,BF∩BE=B
∴PC⊥平面BEF
∴PC⊥EF