满分5 > 高中数学试题 >

已知椭圆的两焦点为,,离心率. (1)求此椭圆的方程; (2)设直线l:y=x+...

已知椭圆的两焦点为manfen5.com 满分网manfen5.com 满分网,离心率manfen5.com 满分网
(1)求此椭圆的方程;
(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值;
(3)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由.
(1)求椭圆的方程即是求a,b两参数的值,由题设条件椭圆的两焦点为,,离心率求出a,b即可得到椭圆的方程. (2)本题中知道了直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,故可由弦长公式建立方程求出参数m的值.首先要将直线方程与椭圆方程联立,再利用弦长公式建立方程; (3)设能构成等腰直角三角形ABC,其中B(0,1),由题意可知,直角边BA,BC不可能垂直或平行于x轴,故可设BA边所在直线的方程为y=kx+1(不妨设k<0),则BC边所在直线的方程为,将此两直线方程与椭圆的方程联立,分别解出A,C两点的坐标,用坐标表示出两线段AB,BC的长度,由两者相等建立方程求参数k,由解的个数判断三角形的个数即可. 【解析】 (1)设椭圆方程为(a>b>0),…(1分) 则,,…(2分)∴a=2,b2=a2-c2=1…(3分) ∴所求椭圆方程为.…(4分) (2)由,消去y,得5x2+8mx+4(m2-1)=0,…(6分) 则△=64m2-80(m2-1)>0得m2<5(*) 设P(x1,y1),Q(x2,y2),则,,y1-y2=x1-x2,…(7分) …(9分) 解得.,满足(*) ∴.…(10分) (3)设能构成等腰直角三角形ABC,其中B(0,1),由题意可知,直角边BA,BC不可能垂直 或平行于x轴,故可设BA边所在直线的方程为y=kx+1(不妨设k<0),则BC边所在直线的方 程为,由,得A,…(11分) ∴,…(12分) 用代替上式中的k,得, 由|AB|=|BC|,得|k|(4+k2)=1+4k2,…(13分) ∵k<0, ∴解得:k=-1或, 故存在三个内接等腰直角三角形.…(14分)
复制答案
考点分析:
相关试题推荐
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,manfen5.com 满分网(万元);当年产量不小于80千件时,manfen5.com 满分网(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD
(2)求证:BC⊥平面PAC.

manfen5.com 满分网 查看答案
已知锐角△ABC中的内角A、B、C的对边分别为a,b,c,定义向量manfen5.com 满分网
(1)求函数f(x)=sin2xcosB-cos2xsinB的单调递增区间;
(2)如果b=2,求△ABC的面积的最大值.
查看答案
已知函数,f(x)=manfen5.com 满分网,数列{an}满足a1=1,an+1=f(an)(n∈N*
(I)求证数列{manfen5.com 满分网}是等差数列,并求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+..anan+1,求Sn
查看答案
离心率为黄金比manfen5.com 满分网的椭圆称为“优美椭圆”.设manfen5.com 满分网是优美椭圆,F、A分别是它的左焦点和右顶点,B是它的短轴的一个顶点,则∠FBA等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.