满分5 > 高中数学试题 >

与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆的圆心在( ) A.一...

与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆的圆心在( )
A.一个椭圆上
B.双曲线的一支上
C.一条抛物线上
D.一个圆上
设动圆P的半径为r,然后根据动圆与圆x2+y2=1及圆x2+y2-8x+12=0都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决. 【解析】 设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2-8x+12=0的圆心为F(4,0),半径为2. 依题意得|PF|=2+r|,|PO|=1+r,则|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支. 故选B.
复制答案
考点分析:
相关试题推荐
设A、B两点的坐标分别为(-1,0),(1,0),条件甲:manfen5.com 满分网; 条件乙:点C的坐标是方程 manfen5.com 满分网+manfen5.com 满分网=1 (y≠0)的解.则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不是充分条件也不是必要条件
查看答案
已知点P(-1,3,-4),且该点在三个坐标平面yoz平面,zox平面,xoy平面上的射影的坐标依次为(x1,y1,z1),(x2,y2,z2)和(x3,y3,z3),则( )
A.x22+y32+z12=0
B.x12+y22+z32=0
C.x32+y12+z22=0
D.以上结论都不对
查看答案
如图,已知定点F(1,0),动点P在y轴上运动,过点P作PM⊥PF并交x轴于M点,延长MP到N,使|PN|=|PM|.
(1)求动点N的轨迹C的方程;
(2)直线l与动点N的轨迹C交于A、B两点,若manfen5.com 满分网=-4,且manfen5.com 满分网≤|AB|≤manfen5.com 满分网,求直线l的斜率的取值范围.

manfen5.com 满分网 查看答案
设各项均为正数的数列{an}的前n项和为Sn,对于任意的正整数n都有等式manfen5.com 满分网成立.
(1)求证manfen5.com 满分网(n∈N+);
(2)求数列{Sn}的通项公式;
(3)记数列manfen5.com 满分网的前n项和为Tn,求证Tn<1.
查看答案
某农产品去年各季度的市场价格如下表:
季  度第一季度第二季度第三季度第四季度
每吨售价(单位:元)195.5200.5204.5199.5
今年某公司计划按去年各季度市场价格的“平衡价m”(平衡价m是这样的一个量:m与各季度售价差的平方和最小)收购该种农产品,并按每个100元纳税10元(又称征税率为10个百分点),计划可收购a万吨,政府为了鼓励公司多收购这种农产品,决定将税率降低x个百分点,预测收购量可增加2x个百分点,
(1)根据题中条件填空,m=______(元/吨);
(2)写出税收y(万元)与x的函数关系式;
(3)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.