由tanα,tanβ是方程x2+3x+4=0的两个根,根据韦达定理表示出两根之和与两根之积,表示出所求角度的正切值,利用两角和的正切函数公式化简后,将表示出的两根之和与两根之积代入即可求出tan(α+β)的值,然后根据两根之和小于0,两根之积大于0,得到两根都为负数,根据α与β的范围,求出α+β的范围,再根据特殊角的三角函数值,由求出的tan(α+β)的值即可求出α+β的值.
【解析】
依题意得tanα+tanβ=-3<0,tanα•tanβ=4>0,
∴tan(α+β)===.
易知tanα<0,tanβ<0,又α,β∈(-,),
∴α∈(-,0),β∈(-,0),
∴α+β∈(-π,0),
∴α+β=-.
故选A.