满分5 > 高中数学试题 >

已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m. (Ⅰ)若y=f...

已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.
(1)y=f(x)在[-1,1]上单调递减函数,要存在零点只需f(1)≤0,f(-1)≥0即可 (2)存在性问题,只需函数y=f(x)的值域为函数y=g(x)的值域的子集即可. 【解析】 (Ⅰ):因为函数f(x)=x2-4x+a+3的对称轴是x=2, 所以f(x)在区间[-1,1]上是减函数, 因为函数在区间[-1,1]上存在零点, 则必有:即,解得-8≤a≤0, 故所求实数a的取值范围为[-8,0]. (Ⅱ)若对任意的x1∈[1,4],总存在x2∈[1,4], 使f(x1)=g(x2)成立,只需函数y=f(x)的值域为函数y=g(x)的值域的子集. f(x)=x2-4x+3,x∈[1,4]的值域为[-1,3],下求g(x)=mx+5-2m的值域. ①当m=0时,g(x)=5-2m为常数,不符合题意舍去; ②当m>0时,g(x)的值域为[5-m,5+2m],要使[-1,3]⊆[5-m,5+2m], 需,解得m≥6; ③当m<0时,g(x)的值域为[5+2m,5-m],要使[-1,3]⊆[5+2m,5-m], 需,解得m≤-3; 综上,m的取值范围为(-∞,-3]∪[6,+∞).
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上,点M是线段AB的中点.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)试在线段CE上确定一点N,使得MN∥平面DAE.

manfen5.com 满分网 查看答案
甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P(元)与时间t(天)函数关系如图(一)所示,该商品日销售量Q(件)与时间t(天)函数关系如图(二)所示.
manfen5.com 满分网
①写出图(一)表示的销售价格与时间的函数关系式P=f(t),写出图(二)表示的日销售量与时间的函数关系式Q=g(t),及日销售金额M(元)与时间的函数关系M=h(t).
②乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N(元)与时间t(天)之间的函数关系为N=-2t2-10t+2750,比较4月份每天两商店销售金额的大小.
查看答案
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.
(1)求AB边所在的直线方程;
(2)求中线AM的长.
查看答案
已知:A={x|a≤x≤a+3},B={x|x<-1或x>5}
(1)若A∩B=∅,求实数a的取值范围.
(2)若A∪B=B,求实数a的取值范围.
查看答案
manfen5.com 满分网已知函数f(x)=manfen5.com 满分网,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.