满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐...

在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)设出圆的标准方程,由相切和过原点的条件,建立方程求解. (2)要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于|OF|的长度4,我们可以转化为探求以右焦点F为圆心,半径为4的圆(x─4)2+y2=8与(1)所求的圆的交点数. 【解析】 (1)设圆心坐标为(m,n)(m<0,n>0), 则该圆的方程为(x-m)2+(y-n)2=8已知该圆与直线y=x相切, 那么圆心到该直线的距离等于圆的半径,则=2 即|m-n|=4① 又圆与直线切于原点,将点(0,0)代入得m2+n2=8② 联立方程①和②组成方程组解得 故圆的方程为(x+2)2+(y-2)2=8; (2)|a|=5,∴a2=25,则椭圆的方程为=1 其焦距c==4,右焦点为(4,0),那么|OF|=4. 通过联立两圆的方程,解得x=,y=. 即存在异于原点的点Q(,), 使得该点到右焦点F的距离等于|OF|的长.
复制答案
考点分析:
相关试题推荐
已知三点P(5,2)、F1(-6,0)、F2(6,0).
(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;
(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.
查看答案
当α∈(0°,180°)变化时,方程x2sinα+y2cosα=1表示的曲线的形状怎样变换?
查看答案
经过M(2,1)作直线L交双曲线manfen5.com 满分网于A、B两点,且M为AB的中点,
(1)求直线L的方程;       
(2)求线段AB的长.
查看答案
已知命题p:|4-x|≤6,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要条件,求a的取值范围.
查看答案
以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|manfen5.com 满分网|-|manfen5.com 满分网|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线manfen5.com 满分网-manfen5.com 满分网=1与椭圆manfen5.com 满分网+y2=1有相同的焦点.
其中真命题的序号为    (写出所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.