满分5 > 高中数学试题 >

如图,四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥爬行,若在...

如图,四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥爬行,若在每顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰回到S点的概率为Pn(n≥2,n∈N).
(1)求P2,P3的值;
(2)求证:3Pn+1+Pn=1(n≥2,n∈N);
(3)求证:P2+P3+…+Pnmanfen5.com 满分网(n≥2,n∈N).

manfen5.com 满分网
(1)利用分布计数原理求出小虫爬行2米所有的方法数,求出小虫爬2米后恰回到S点的方法数,利用古典概型概率公式求出概率, (2)利用对立事件的概率公式求出Pn,Pn+1的递推关系, (3)有(2)中Pn,Pn+1的递推关系构造新数列,利用等比数列的通项公式求出Pn的通项,通过分组利用等差数列、等比数列的前n项和公式求出和. 【解析】 (1)P2表示从S点到A(或B、C、D),然后再回到S点的概率,所以P2=4×=; 因为从S点沿一棱爬行,不妨设为沿着SA棱再经过B或D,然后再回到S点的概率为×2=, 所以P3=×4=. (2)证明:设小虫爬行n米后恰回到S点的概率为Pn, 那么1-Pn表示爬行n米后恰好没回到S点的概率, 则此时小虫必在A(或B、C、D)点,所以×(1-Pn)=Pn+1,即3Pn+1+Pn=1(n≥2,n∈N). (3)证明:由3Pn+1+Pn=1,得=-, 从而Pn=+n-2(n≥2,n∈N). 所以P2+P3+…+Pn=+ =+ =+×+>.
复制答案
考点分析:
相关试题推荐
崇义县环保局决定对阳明湖的四个区域A、B、C、D的水质进行检测,水质分为I、II、III类,每个区域的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有III类或两次都是II类,则该区域的水质不合格,设各区域的水质相互独立,且每次检测的结果也相互独立,根据多次抽检结果,一个区域一次检测水质为I、II、III三类的频率依次为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(I)在阳明湖的四个区域中任取一个区域,估计该区域水质合格的概率;
(II)如果对阳明湖的四个区域进行检测,记在上午检测水质为I类的区域数为ξ,并以水质为I 类的频率作为水质为I类的概率,求ξ的分布列及期望值.
查看答案
如图:已知四边形ABCD是边长为4的正方形,E、F分别是AB,AD的中点,GC垂直于ABCD所在平面,且GC=2.
(1)求异面直线BC与GE所成的角的余弦值;
(2)求平面CBG与平面BGD的夹角的余弦值;
(3)求三棱锥D-GEF的体积.

manfen5.com 满分网 查看答案
某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料
日期3月1日3月2日3月3日3月4日3月5日
温差x(°C)101113128
发芽数y(颗)2325302616
(I)从3月1日至3月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率.
(II)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程manfen5.com 满分网=manfen5.com 满分网x+manfen5.com 满分网
(III)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(II)所得的线性回归方程是否可靠?
查看答案
甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成中随机抽取8次,记录如下
甲:82,91,79,78,95,88,83,84;乙:92,95,80,75,83,80,90,85.
(1)画出甲、乙两位学生成绩的茎叶图;
(2)现要从中选派一人参加数学竞赛,从统计学角度,你认为派哪位学生参加合请说明理由.
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
查看答案
在右图中,“构建和谐社会,创美好崇义”,从上往下读,上下、左右都不能跳读,共有    种不同的读法( 用数字作答)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.