满分5 > 高中数学试题 >

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证: (1)...

manfen5.com 满分网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1
(2)A1C⊥面AB1D1
(1)欲证C1O∥面AB1D1,根据直线与平面平行的判定定理可知只需证C1O与面AB1D1内一直线平行,连接A1C1,设A1C1∩B1D1=O1,连接AO1,易得C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,满足定理所需条件; (2)欲证A1C⊥面AB1D1,根据直线与平面垂直的判定定理可知只需证A1C与面AB1D1内两相交直线垂直根据线面垂直的性质可知A1C⊥B1D1,同理可证A1C⊥AB1,又D1B1∩AB1=B1,满足定理所需条件. 证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1, ∵ABCD-A1B1C1D1是正方体, ∴A1ACC1是平行四边形, ∴A1C1∥AC且A1C1=AC, 又O1,O分别是A1C1,AC的中点, ∴O1C1∥AO且O1C1=AO, ∴AOC1O1是平行四边形, ∴C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1, ∴C1O∥面AB1D1; (2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!, 又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1, 同理可证A1C⊥AB1,又D1B1∩AB1=B1, ∴A1C⊥面AB1D1
复制答案
考点分析:
相关试题推荐
给出下列四个命题:
①如果α⊥β,那么α内一定存在直线平行于平面β
②如果α⊥β,那么α内所有直线都垂直于平面β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④α∥β,β∥γ,m⊥α,则m⊥γ
其中为真命题的序号为    查看答案
线段AB长为5cm,在水平面上向右平移4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移4cm记为A′B′,依次连接构成长方体ABCD-A′B′C′D′.
①该长方体的高为    cm;
②平面A′B′C′D′与面CD D′C′间的距离为    cm;
③A到面BC C′B′的距离为    cm. 查看答案
由小正方体木块搭成的几何体的三视图如下图,则该几何体由    块小正方体木块搭成.manfen5.com 满分网 查看答案
manfen5.com 满分网如图所示的直观图(△AOB),其平面图形的面积为    查看答案
在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则异面直线PC与AB所成的角为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.