满分5 > 高中数学试题 >

如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=...

manfen5.com 满分网如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=manfen5.com 满分网,D 是A1B1中点.
(1)求证C1D⊥平面A1B;
(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.
(1)欲证C1D⊥平面AA1B1B,根据直线与平面垂直的判定定理可知只需证C1D与平面AA1B1B内两相交直线垂直,而ABC-A1B1C1是直三棱柱, 则∠A1C1B1=90°,从而C1D⊥A1B1,AA1⊥C1D,满足定理所需条件; (2)作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点FB1B的中点即为所求,根据C1D⊥平面AA1BB,AB1⊂平面AA1B1B,则C1D⊥AB1,AB1⊥DF,DF∩C1D=D,满足线面垂直的判定定理,则AB1⊥平面C1DF. (1)证明:∵ABC-A1B1C1是直三棱柱, ∴A1C1=B1C1=1,且∠A1C1B1=90°. 又D是A1B1的中点,∴C1D⊥A1B1. ∵AA1⊥平面A1B1C1,C1D⊂平面A1B1C1, ∴AA1⊥C1D,∴C1D⊥平面AA1B1B. (2)【解析】 作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点F即为所求. 事实上,∵C1D⊥平面AA1B1B,AB1⊂平面AA1B1B, ∴C1D⊥AB1.又AB1⊥DF,DF∩C1D=D, ∴AB1⊥平面C1DF. 四边形AA1B1B为正方形,此时点F为B1B的中点.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在长方体ABCD-A1B1C1D1中,AB=manfen5.com 满分网,B1B=BC=1,
(1)求D D1与平面ABD1所成角的大小;
(2)求面B D1C与面A D1D所成二面角的大小;
(3)求AD的中点M到平面D1B C的距离.
查看答案
manfen5.com 满分网如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB,PC的中点.
(1)求证:EF∥平面PAD;
(2)求证:EF⊥CD;
(3)若∠PDA=45°,求EF与平面ABCD所成的角的大小.
查看答案
manfen5.com 满分网如图,PA⊥平面ABC,AC⊥BC,AB=2,manfen5.com 满分网manfen5.com 满分网
(1)证明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求点A到平面PBC的距离.
查看答案
画出下面实物的三视图
manfen5.com 满分网
查看答案
manfen5.com 满分网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O∥面AB1D1
(2)A1C⊥面AB1D1
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.