满分5 > 高中数学试题 >

已知f(x)=ax-lnx,x∈(0,e)其中e是自然常数,a∈R. (1)讨论...

已知f(x)=ax-lnx,x∈(0,e)其中e是自然常数,a∈R.
(1)讨论a=1时,f(x)的单调性、极值;
(2)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
(1)把a=1代入原函数,求出其导函数,即可求f(x)的单调性、极值; (2)先求出其导函数,通过分类讨论分别求出导数为0的根,以及单调性和极值,再与f(x)的最小值是3相结合,即可得出结论. 【解析】 (1)当a=1时,f(x)=x-lnx, 则(1分) 且x∈(0,e)得x∈[1,e)单调递增;(3分) 且x∈(0,e)得x∈(0,1)单调递减;(5分) 当x=1时取到极大值1;(6分) (2)(7分) ①当a≤0时,f′(x)<0,f(x)在x∈(0,e)上单调递减f(e)<0,与题意不符;(9分) ②当a>0时,f′(x)=0的根为 当时,,解得a=e2(12分) ③当时,f′(x)<0,f(x)在x∈(0,e)上单调递减f(e)<0,与题意不符;(14分) 综上所述a=e2(15分)
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网的反函数为f-1(x),数列{an}和{bn}满足:manfen5.com 满分网,an+1=f-1(an),函数y=f-1(x)的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn
(1)求数列{an}的通项公式;
(2)若数列manfen5.com 满分网;的项中仅manfen5.com 满分网最小,求λ的取值范围;
(3)令函数manfen5.com 满分网,0<x<1.数列{xn}满足:manfen5.com 满分网,0<xn<1且xn+1=g(xn),(其中n∈N*).证明:manfen5.com 满分网manfen5.com 满分网
查看答案
已知线段manfen5.com 满分网,CD的中点为O,动点A满足AC+AD=2a(a为正常数).
(1)建立适当的直角坐标系,求动点A所在的曲线方程;
(2)若a=2,动点B满足BC+BD=4,且OA⊥OB,试求△AOB面积的最大值和最小值.
查看答案
已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
查看答案
已知函数f(x)=3-x,等比数列an的前n项和为f(n)-c,正项数列bn的首项为c,且前n项和Sn满足manfen5.com 满分网
(1)求c,并求数列{an}和{bn}的通项公式;
(2)求数列manfen5.com 满分网的前n项和为Tn
查看答案
已知不等式x2-5mx-6m2≤0的解集为A,不等式ax2-x+12a-2<0的解集为B,
(1)求A;    
(2)当m=1时,A∩B≠∅,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.