满分5 > 高中数学试题 >

设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量=(,),=(,),...

设A(x1,y1),B(x2,y2)是椭圆manfen5.com 满分网上的两点,已知向量manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),manfen5.com 满分网=(manfen5.com 满分网manfen5.com 满分网),若manfen5.com 满分网=0且椭圆的离心率e=manfen5.com 满分网,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(1)依题意可求得b,进而根据离心率求得a,则椭圆方程可得. (2)先看当直线AB斜率不存在时,即x1=x2,y1=y2,根据=0代入求得x12-=0把点A代入椭圆方程,求得A点横坐标和纵坐标的绝对值,进而求得△AOB的面积的值;当直线AB斜率存在时:设AB的方程为y=kx+b与椭圆方程联立消去y,根据伟大定理求得x1+x2和x1x2的表达式代入=0中整理可求得2b2-k2=4代入三角形面积公式中求得求得△AOB的面积的值为定值.最后综合可得答案. 【解析】 (1)依题意知2b=2,∴b=1,e=== ∴a=2,c== ∴椭圆的方程为 (2)①当直线AB斜率不存在时,即x1=x2,y1=y2, ∵=0 ∴x12-=0 ∴y12=4x12 又A(x1,y1)在椭圆上,所以x12+=1 ∴|x1|=,|y1|= s=|x1||y1-y2|=1 所以三角形的面积为定值. ②当直线AB斜率存在时:设AB的方程为y=kx+b 消去y得(k2+4)x2+2kbx+b2-4=0 ∴x1+x2=,x1x2=,△=(2kb)2-4(k2+4)(b2-4)>0 而=0, ∴x1x2+=0 即x1x2+=0代入整理得 2b2-k2=4 S=|AB|=|b|= ===1 综上三角形的面积为定值1.
复制答案
考点分析:
相关试题推荐
已知f(x)=ax-lnx,x∈(0,e)其中e是自然常数,a∈R.
(1)讨论a=1时,f(x)的单调性、极值;
(2)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
查看答案
函数manfen5.com 满分网的反函数为f-1(x),数列{an}和{bn}满足:manfen5.com 满分网,an+1=f-1(an),函数y=f-1(x)的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn
(1)求数列{an}的通项公式;
(2)若数列manfen5.com 满分网;的项中仅manfen5.com 满分网最小,求λ的取值范围;
(3)令函数manfen5.com 满分网,0<x<1.数列{xn}满足:manfen5.com 满分网,0<xn<1且xn+1=g(xn),(其中n∈N*).证明:manfen5.com 满分网manfen5.com 满分网
查看答案
已知线段manfen5.com 满分网,CD的中点为O,动点A满足AC+AD=2a(a为正常数).
(1)建立适当的直角坐标系,求动点A所在的曲线方程;
(2)若a=2,动点B满足BC+BD=4,且OA⊥OB,试求△AOB面积的最大值和最小值.
查看答案
已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
查看答案
已知函数f(x)=3-x,等比数列an的前n项和为f(n)-c,正项数列bn的首项为c,且前n项和Sn满足manfen5.com 满分网
(1)求c,并求数列{an}和{bn}的通项公式;
(2)求数列manfen5.com 满分网的前n项和为Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.