由已知中sinθ、cosθ是关于x的方程4x2+2mx+m=0的两个实根,我们根据方程存在实根的条件,我们可以求出满足条件的m的值,然后根据韦达定理结合同角三角函数关系,我们易求出满足条件的m的值.
【解析】
若方程4x2+2mx+m=0有实根,
则△=(2m)2-16m≥0
m≤0,或m≥4
若sinθ、cosθ是关于x的方程4x2+2mx+m=0的两个实根,
则sinθ+cosθ=,
sinθ•cosθ=
则(sinθ+cosθ)2-2(sinθ•cosθ)=1
即m=1-,m=1+(舍去)
故选B