满分5 > 高中数学试题 >

如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知 (Ⅰ)求证:...

manfen5.com 满分网如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知manfen5.com 满分网
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(Ⅲ)在(Ⅱ)的条件下,AB=manfen5.com 满分网,求二面角A-EB1-A1的平面角的正切值.
(I)由已知中AB⊥侧面BB1C1C,易得AB⊥BC1,又由,解△BC1C得C1B⊥BC,进而根据线面垂直的判定定理,即可得到C1B⊥平面ABC; (Ⅱ)由EA⊥EB1,AB⊥EB1,我们易得B1E⊥平面ABE,BE⊥B1E,设CE=x,则C1E=2-x,由余弦定理,我们易判断E为CC1的中点时,EA⊥EB1 (III)取EB1的中点D,A1E的中点F,BB1的中点N,AB1的中点M,连DF,DN,MN,MF,则MNDF为矩形,MD∥AE,由A1B1⊥EB1,BE⊥EB1故∠MDF为所求二面角的平面角,解Rt△DFM中,即可得到二面角A-EB1-A1的平面角的正切值. 证明:(Ⅰ)因为AB⊥侧面BB1C1C,故AB⊥BC1 在△BC1C中, 由余弦定理有 故有BC2+BC12=CC12 ∴C1B⊥BC 而BC∩AB=B且AB,BC⊂平面ABC ∴C1B⊥平面ABC (Ⅱ)由EA⊥EB1,AB⊥EB1,AB∩AE=A,AB,AE⊂平面ABE 从而B1E⊥平面ABE且BE⊂平面ABE故BE⊥B1E 不妨设CE=x,则C1E=2-x,则BE2=1+x2-x 又∵则B1E2=1+x2+x 在Rt△BEB1中有x2+x+1+x2-x+1=4从而x=±1(舍负) 故E为CC1的中点时,EA⊥EB1 (Ⅲ)取EB1的中点D,A1E的中点F,BB1的中点N,AB1的中点M 连DF则DF∥A1B1,连DN则DN∥BE,连MN则MN∥A1B1 连MF则MF∥BE,且MNDF为矩形,MD∥AE 又∵A1B1⊥EB1,BE⊥EB1故∠MDF为所求二面角的平面角 在Rt△DFM中, ∴
复制答案
考点分析:
相关试题推荐
有一种舞台灯,外形是正六棱柱ABCDEF-A1B1C1D1E1F1,在其每一个侧面上(不在棱上)安装5只颜色各异的彩灯,上下底面不安装彩灯,假若每只灯正常发光的概率是0.5,若一个面上至少有3只灯发光,则不需要维修,否则需要更换这个面.假定更换一个面需100元,用ξ表示维修一次的费用.
(1)求侧面ABB1A1需要维修的概率;
(2)写出ξ的分布列,并求ξ的数学期望.
查看答案
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知S△ABC=6+2manfen5.com 满分网,求函数f(x)=cos2x+asinx的最大值.
查看答案
在平面直角坐标系xOy,已知平面区域 A={ (x,y)|x+ty<2,且t∈R,x≥0,y≥0},若平面区域B={ (x,y )|(x+y,x-y )∈A }的面积不小于1,则t的取值范围为    查看答案
为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎,部分数据丢失,但知道前四组的频数成等比数列,后六组的频数成等差数列,设最大频率为a,视 力在4.6到5.0之间的学生数为b,则a+b的值为   
manfen5.com 满分网 查看答案
如图所示的流程图,若输出的结果是9,则判断框中的横线上可以填入的最大整数为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.