对于A,由极值点的定义判断.对于B,根据向量垂直的定义进行判断;对于C,若函数f(x)的定义域是R,由“f(0)=0”推不出“f(x)为奇函数”.由奇函数的定义可知f(0)=-f(0)所以可得2f(0)=0所以f(0)=0.对于D,利用复平面的特征即可判断正误;
【解析】
A不正确,点x为f(x)的极值点由必须满足两个条件一是f′(x)=0,二是两侧的正负相异.
B:∵不能推出,故错;
对于C:若函数f(x)的定义域是R,
由“f(0)=0”推不出“f(x)为奇函数”.
由奇函数的定义可知f(0)=-f(0)所以可得2f(0)=0所以f(0)=0.
∴若函数f(x)的定义域是R,
则“f(0)=0”是“f(x)为奇函数”的必要不充分条件.正确;
对于D:复平面上,除原点外,虚轴上的点都表示纯虚数;故错;
故选C.