满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=...

manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=manfen5.com 满分网,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
(Ⅰ)设AC∩BD=O,连OE,将PB平移到OE,根据异面直线所成角的定义可知∠EOA即为AC与PB所成的角或其补角,在△AOE中,利用余弦定理求出此角的余弦值即可; (Ⅱ)在面ABCD内过D作AC的垂线交AB于F,连PF,设N为PF的中点,连NE,则NE∥DF,根据线面垂直的判定定理可知DF⊥面PAC,从而NE⊥面PAC,则N点到AB的距离即为AP,N点到AP的距离即为AF. 【解析】 (Ⅰ)设AC∩BD=O,连OE,则OE∥PB, ∴∠EOA即为AC与PB所成的角或其补角. 在△AOE中,AO=1,OE=PB=,AE=PD=, ∴cosEOA==. 即AC与PB所成角的余弦值为. (Ⅱ)在面ABCD内过D作AC的垂线交AB于F,则∠ADF=. 连PF,则在Rt△ADF中DF==,AF=ADtanADF=. 设N为PF的中点,连NE,则NE∥DF, ∵DF⊥AC,DF⊥PA,∴DF⊥面PAC.从而NE⊥面PAC. ∴N点到AB的距离=AP=1,N点到AP的距离=AF=.
复制答案
考点分析:
相关试题推荐
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=manfen5.com 满分网,BD=CD=1,另一个侧面是正三角形
(1)求证:AD⊥BC
(2)求二面角B-AC-D的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.
(Ⅰ)求证AC⊥BC1
(Ⅱ)求证AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.
查看答案
若多项式x+x10=a+a1(x+1)+…+a9(x+1)9+a10(x+1)10,那么a+a2+…+a6+a8=    查看答案
若(ax-1)5的展开式中x3的系数是80,则实数a的值是    查看答案
已知集合A={12,14,16,18,20},B={11,13,15,17,19},在A中任取一个元素用ai(i=1,2,3,4,5)表示,在B中任取一个元素用bj(j=1,2,3,4,5)表示,则所取两数满足ai>bI的概率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.