满分5 > 高中数学试题 >

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑...

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式. (II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值. 【解析】 (Ⅰ)设隔热层厚度为xcm,由题设,每年能源消耗费用为. 再由C(0)=8,得k=40, 因此. 而建造费用为C1(x)=6x, 最后得隔热层建造费用与20年的能源消耗费用之和为 (Ⅱ),令f'(x)=0,即. 解得x=5,(舍去). 当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为. 当隔热层修建5cm厚时,总费用达到最小值为70万元.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3-4x+4(a∈R)在x=2取得极值.
(Ⅰ)确定a的值并求函数的单调区间;
(Ⅱ)若关于x的方程f(x)=b至多有两个零点,求实数b的取值范围.
查看答案
已知x>0,观察下列几个不等式:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网;…;归纳猜想一般的不等式为    查看答案
一物体受到与它运动方向相同的力:manfen5.com 满分网的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于    查看答案
复数manfen5.com 满分网(i是虚数单位)在复平面上对应的点位于第    象限. 查看答案
已知函数f(x)的导数f'(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(0,+∞)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.