①:可以举反例,如an=0可判定真假;②:对数列{(-2)n}直接根据定义进行判定即可;③:对数列{akn}可利用叠加法进行判定;④:设数列{an}首项a1,公差为d,然后根据等方差数列的定义建立关系式,看d是否为0,从而判定真假.
【解析】
①:可以举反例.如an=0时数列不存在,所以①错误
②:对数列{(-2)n}有an2-an-12=[(-2)n]2-[(-2)n-1]2=4n-4n-1不是常数,所以②错误
③:对数列{akn}有akn2-ak(n-1)2=(akn2-akn-12)+(akn-12-akn-22)+…+(akn-k+12-akn-k2)=kp,而k,p均为常数,所以数列{akn}也是“等方差数列”,所以③正确
④:设数列{an}首项a1,公差为d则有a2=a1+d,a3=a1+2d,所以有(a1+d)2-a12=p,且(a1+2d)2-(a1+d)2=p,所以得d2+2a1d=p,3d2+2a1d=p,上两式相减得d=0,所以此数列为常数数列,所以④正确.
故答案为:③④