满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax(a∈R) (1)当a=1时,求f(x)的极小值;...

已知函数f(x)=x3-3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;
(3)设g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.
(1)由f(x)=x3-3ax,得f′(x)=3x2-3a,当f′(x)>0,f′(x)<0时,分别得到f(x)的单调递增区间、单调递减区间,由此可以得到极小值为f(1)=-2. (2)要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,只需令直线的斜率-1小于f(x)的切线的最小值即可,也就是-1<-3a. (3)由已知易得g(x)为[-1,1]上的偶函数,只需求在[0,1]上的最大值F(a).有必要对a进行讨论:①当a≤0时,f′(x)≥0,得F(a)=f(1)=1-3a;②当a≥1时,f(x)≤0,且f(x)在[0,1]上单调递减,得g(x)=-f(x),则F(a)=-f(1)=3a-1;当0<a<1时,得f(x)在[0,]上单调递减,在[,1]上单调递增.当f(1)≤0时,f(x)≤0,所以得g(x)=-f(x),F(a)=-f()=2a,当f(1)>0,需要g(x)在x=处的极值与f(1)进行比较大小,分别求出a的取值范围,即综上所述求出F(a)的解析式. 【解析】 (1)∵当a=1时,f′(x)=3x2-3,令f′(x)=0,得x=-1或x=1,当f′(x)<0,即x∈(-1,1)时,f(x)为减函数;当f′(x)>0,即x∈(-∞,-1],或x∈[1,+∞)时,f(x)为增函数.∴f(x)在(-1,1)上单调递减,在(-∞,-1],[1,+∞)上单调递增∴f(x)的极小值是f(1)=-2 (2)∵f′(x)=3x2-3a≥-3a,∴要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,当且仅当-1<-3a时成立,∴ (3)因g(x)=|f(x)|=|x3-3ax|在[-1,1]上是偶函数,故只要求在[0,1]上的最大值 ①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增且f(0)=0,∴g(x)=f(x),F(a)=f(1)=1-3a. ②当a>0时,, (ⅰ)当时,g(x)=|f(x)|=-f(x),-f(x)在[0,1]上单调递增,此时F(a)=-f(1)=3a-1 (ⅱ)当时,当f′(x)>0,即x>或x<-时,f(x)单调递增;当f′(x)<0,即-<x<时,f(x)单调递减.所以,在单调递增. 1°当时,,; 2°当 (ⅰ)当 (ⅱ)当 综上所述
复制答案
考点分析:
相关试题推荐
某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克.根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:P=1000(x+t-8)( x≥8,t≥0),Q=500manfen5.com 满分网(8≤x≤14).当P=Q时市场价格称为市场平衡价格.
(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;
(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?
查看答案
已知△ABC中,manfen5.com 满分网
(1)求证:∠C=90°; 
(2)如图,以C为原点,CB,CA分别在x轴和y的正半轴,当AB=5时,求△ABC的内切圆的方程?
(3)若AB=t(t>0),P为内切圆上的一个动点,求PA2+PB2+PC2的最大值和此时的P点坐标.

manfen5.com 满分网 查看答案
已知数列{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16
(1)求数列{an}的通项公式;
(2)数列{an}和数列{bn}满足等式an=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Sn
查看答案
如图,在直三棱柱ABC-A1B1C1中,AB=AC,D、E分别为BC、B1C的中点.
(1)求证:DE∥平面ABB1A1
(2)求证:平面ADE⊥平面B1BC.

manfen5.com 满分网 查看答案
设向量manfen5.com 满分网manfen5.com 满分网=(cosx,cosx),manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求tanx的值;
(2)求函数f(x)=manfen5.com 满分网manfen5.com 满分网的周期和函数最大值及相应x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.