满分5 > 高中数学试题 >

已知点M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F. (1)若圆M与y轴...

已知点M在椭圆manfen5.com 满分网上,以M为圆心的圆与x轴相切于椭圆的右焦点F.
(1)若圆M与y轴相切,求椭圆的离心率;
(2)若圆M与y轴相交于A,B两点,且△ABM是边长为2的正三角形,求椭圆的方程.
(1)由题意,应该先设出点M的坐标及圆的半径,利用题中的条件建立方程求解即可; (2)由题意利用所给的条件信息及(1)中的圆的半径与a,b的关系和离心率进而求解出椭圆的方程. 【解析】 (1)设M(x,y),圆M的半径为r. 因为椭圆的右焦点的坐标为(c,0),圆M与x轴相切于点F, 所以MF⊥x轴,所以x=c,r=|y|① 因为点M在椭圆上,所以 将上式代入上式得, 因为a2-c2=b2所以即:② 又因为圆M与y轴相切,所以M到y轴的距离等于半径r,即:r=|x|③ 由①,②,③得即:b2=ac从而得c2+ac-a2=0 两边同除以a2,得:(,,e2+e-1=0 解得:因为e∈(0,1)             故:. (2)因为△ABM是边长为2的正三角形,所以圆M的半径r=2, M到圆y轴的距离又由(1)知:,d=c 所以,,又因为a2-b2=c2 从而有a2-2a-3=0解得:a=3或a=-1(舍去)b2=2a=6 所求椭圆方程是:
复制答案
考点分析:
相关试题推荐
已知a,b,c均为实数,且manfen5.com 满分网manfen5.com 满分网,c=manfen5.com 满分网,求证:a,b,c中至少有一个大于0.
查看答案
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒)1614128
每小时生产有缺点的零件数y(件)11985
(1)利用散点图或相关系数r的大小判断变量y对x是否线性相关?为什么?
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(最后结果精确到0.001.参考数据:manfen5.com 满分网,16×11+14×9+12×8+8×5=438,162+142+122+82=660,112+92+82+52=291).
查看答案
已知z是复数,z+2i,manfen5.com 满分网均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
查看答案
已知f(x)=sinx+2x,x∈R,且f(1-a)+f(2a)<0,则a的取值范围是    查看答案
若z∈C且|z+2-2i|=1,则|z-1+2i|的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.