满分5 > 高中数学试题 >

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC...

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=manfen5.com 满分网
(I) 求△ABC的周长;
(II)求cos(A-C)的值.
(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长; (II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值. 【解析】 (I)∵c2=a2+b2-2abcosC=1+4-4×=4, ∴c=2, ∴△ABC的周长为a+b+c=1+2+2=5. (II)∵cosC=,∴sinC===. ∴sinA===. ∵a<c,∴A<C,故A为锐角.则cosA==, ∴cos(A-C)=cosAcosC+sinAsinC=×+×=.
复制答案
考点分析:
相关试题推荐
设代数方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根±x1,±x2,…,±xn,则manfen5.com 满分网,比较两边x2的系数得a1=    ;若已知展开式manfen5.com 满分网对x∈R,x≠0成立,则由于manfen5.com 满分网有无穷多个根:±π,±2π,…,+±nπ,…,于是manfen5.com 满分网,利用上述结论可得manfen5.com 满分网=    查看答案
在四边形ABCD中,manfen5.com 满分网=manfen5.com 满分网=(1,1),manfen5.com 满分网,则四边形ABCD的面积是    查看答案
甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有    种. 查看答案
随机抽取某产品m件,测得其长度分别为k(k∈R),则如图所示的程序框图输出的S=    ,s表示的样本的数字特征是    .(注:框图中的赋值符号“=”也可以写成“←”“:=”)
manfen5.com 满分网 查看答案
设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S9=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.