满分5 > 高中数学试题 >

已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l...

manfen5.com 满分网已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于AF(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:
(1)∠BAC=∠CAG
(2)AC2=AE•AF.
(1)连接BC,根据AB为⊙O的直径得到∠ECB与∠ACG互余,根据弦切角得到∠ECB=∠BAC,得到∠BAC与∠ACG互余,再根据∠CAG与∠ACG互余,得到∠BAC=∠CAG; (2)连接CF,利用弦切角结合(1)的结论,可得∠GCF=∠ECB,再用外角进行等量代换,得到∠AFC=∠ACE,结合∠FAC=∠CAE得到△FAC∽△CAE,从而得到AC是AE、AF的比例中项,从而得到AC2=AE•AF. 证明:(1)连接BC, ∵AB为⊙O的直径…(2分) ∴∠ACB=90°⇒∠ECB+∠ACG=90°…(1分) ∵GC与⊙O相切于C, ∴∠ECB=∠BAC ∴∠BAC+∠ACG=90°…(4分) 又∵AG⊥CG⇒∠CAG+∠ACG=90° ∴∠BAC=∠CAG…(6分) (2)由(1)可知∠EAC=∠CAF,连接CF ∵GE与⊙O相切于C, ∴∠GCF=∠CAF=∠BAC=∠ECB ∵∠AFC=∠GCF+90°,∠ACE=∠ECB+90° ∴∠AFC=∠ACE…(8分) ∵∠FAC=∠CAE ∴△FAC∽△CAE…(10分) ∴ ∴AC2=AE•AF…(12分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>0,b>0)与双曲线x2-y2=1有共同的焦点F1、F2,设它们在第一象限的交点为P,且PF1⊥PF2
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为k(k≠0)的直线l,与椭圆交于不同的两点A、B,点Q满足manfen5.com 满分网=manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网=0?若存在,求出k的取值范围;若不存在,说明理由.
查看答案
设函数f(x)=lnx-2ax.
(1)若函数y=f(x)的图象在点(1,f(1))处的切线为直线l,且直线l与圆(x+1)2+y2=1相切,求a的值;
(2)当a>0时,求函数f(x)的单调区间.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=1,AB=manfen5.com 满分网,BC=manfen5.com 满分网,AA1=manfen5.com 满分网
(Ⅰ)求证:A1B⊥B1C;
(Ⅱ)求二面角A1-B1C-B的大小.
查看答案
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
频数23101515x31
乙校:
分组[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150)
频数12981010y3
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
 甲校乙校总计
优秀   
非优秀   
总计   
附:manfen5.com 满分网
P(k2≥k0.100.0250.010
k2.7065.0246.635

查看答案
在△ABC中,a、b、c分别是角A、B、C的对边,manfen5.com 满分网=(2b-manfen5.com 满分网c,cosC),manfen5.com 满分网=(manfen5.com 满分网a,cosA),且manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小;
(2)求2manfen5.com 满分网cos2B-sin2B-manfen5.com 满分网的取值区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.