满分5 > 高中数学试题 >

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ...

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)求cosA+sinC的取值范围.
(1)先利用正弦定理求得sinB的值,进而求得B. (2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围. 【解析】 (Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以, 由△ABC为锐角三角形得. (Ⅱ)===. 由△ABC为锐角三角形知,<A<., 所以. 由此有, 所以,cosA+sinC的取值范围为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2cos2x+sin2x-4cosx.
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
已知{an}是公比为q≠1的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,求使Sn>0成立的最大的n的值.
查看答案
定义:在数列{an}中,若an2-an-12=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的有关判断:
①若{an}是“等方差数列”,则数列manfen5.com 满分网是等差数列;
②{(-2)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)也是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确的命题为    .(写出所有正确命题的序号) 查看答案
不等式ax2+bx+2>0的解集是manfen5.com 满分网,则a-b的值等于    查看答案
等差数列{an} 中a1+a9+a2+a8=20,则a3+a7=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.