满分5 > 高中数学试题 >

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC...

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C=. (2)B=-A,化简sinA-cos (B+)=2sin(A+).因为0<A<,推出 求出2sin(A+)取得最大值2.得到A=,B= 【解析】 (1)由正弦定理得  sinCsinA=sinAcosC, 因为0<A<π,所以sinA>0.从而sinC=cosC, 又cosC≠0,所以tanC=1,C=. (2)有(1)知,B=-A,于是 =sinA+cosA =2sin(A+). 因为0<A<,所以 从而当A+,即A=时 2sin(A+)取得最大值2. 综上所述,cos (B+)的最大值为2,此时A=,B=
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=manfen5.com 满分网,b=manfen5.com 满分网,1+2cos(B+C)=0,求边BC上的高.
查看答案
以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
manfen5.com 满分网
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(注:方差manfen5.com 满分网,其中manfen5.com 满分网的平均数)
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
查看答案
在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,再令an=lgTn,(n∈N*),则数列{an}的通项公式是    查看答案
已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为    查看答案
已知x,y为正实数,且2x+y=1,则manfen5.com 满分网的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.