考点分析:
相关试题推荐
已知数列{a
n}的各项均是正数,其前n项和为S
n,满足(p-1)S
n=p
2-a
n,其中p为正常数,且p≠1.
(1)求数列{a
n}的通项公式;
(2)设b
n=
的取值范围;
(3)是否存在正整数M,使得n>M时,a
1a
4a
7…a
3n-2>a
78恒成立?若存在,求出相应的M的最小值;若不存在,请说明理由.
查看答案
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(I)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b
n}中的b
3、b
4、b
5.
(I) 求数列{b
n}的通项公式;
(II) 数列{b
n}的前n项和为S
n,求证:数列{S
n+
}是等比数列.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求
sinA-cos(B+
)的最大值,并求取得最大值时角A、B的大小.
查看答案
在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=
,b=
,1+2cos(B+C)=0,求边BC上的高.
查看答案