满分5 > 高中数学试题 >

设集合A={x|0<x<2},B={x|x2≤1}.则A∩B=( ) A.{x|...

设集合A={x|0<x<2},B={x|x2≤1}.则A∩B=( )
A.{x|-1≤x<2}
B.{x|0<x≤1}
C.{x|x<2}
D.{x|1≤x<2}
先解不等式求出集合B;再结合已知的集合A即可求出结论. 【解析】 因为:x2≤1⇒x2-1≤0⇒(x-1)(x+1)≤0⇒-1≤x≤1. ∴B={x|-1≤x≤1}, ∵A={x|0<x<2}, ∴A∩B={x|0<x≤1}. 故选B.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网满足manfen5.com 满分网,且manfen5.com 满分网,令manfen5.com 满分网
(1)求manfen5.com 满分网(用k表示);
(2)当k>0时,manfen5.com 满分网对任意的t∈[-1,1]恒成立,求实数x取值范围.
查看答案
已知函数f(x)=asinxcosx+manfen5.com 满分网acos2x-manfen5.com 满分网a+1(a>0)的定义域为R,当manfen5.com 满分网时,f(x)的最大值为2
(1)求a的值
(2)用五点法作出该函数在长度为一个周期的闭区间上的图象
(3)写出该函数的单调递增区间及对称中心的坐标.
查看答案
在△ABC中,已知角A,B,C满足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的两根,若△ABC的面积为manfen5.com 满分网,试求△ABC的三边的长.
查看答案
已知A、B、C是△ABC三内角,向量manfen5.com 满分网=(-1,manfen5.com 满分网),manfen5.com 满分网=(cosA,sinA),且manfen5.com 满分网
(Ⅰ)求角A
(Ⅱ)若manfen5.com 满分网
查看答案
如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤manfen5.com 满分网)的图象与y轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求manfen5.com 满分网的夹角.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.