先根据f′(x)g(x)+f(x)g′(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在(-∞,0)上递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在(0,+∞)上也是增函数,最后根据g(3)=0可求得答案.
【解析】
因 f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]'>0
故f(x)g(x)在(-∞,0)上递增,
又∵f(x),g(x)分别是定义R上的奇函数和偶函数,
∴f(x)g(x)为奇函数,关于原点对称,所以f(x)g(x)在(0,+∞)上也是增函数.
∵f(3)g(3)=0,∴f(-3)g(-3)=0
所以f(x)g(x)<0的解集为:x<-3或0<x<3
故选D.