(1)先根据f(x)为偶函数,求出b和d的值,再根据函数的图象经过点(0,-1)求出e,然后根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,建立一等量关系,再根据切点在曲线上建立一等式关系,解方程组即可求得结果;
(2)根据对任意x∈R,不等式f(x)≤t(x2+1)总成立,分离参数可得恒成立,进而转化为求函数的最大值即可,利用换元法和基本不等式即可求得结果.
【解析】
(1)∵f(x)是偶函数,∴f(-x)=f(x)恒成立.
即a(-x)4+b(-x)3+c(-x)2+d(-x)+e=ax4+bx3+cx2+dx+e恒成立,
∴b=0,d=0,即f(x)=ax4+cx2+e.
又由图象过点A(0,-1),可知f(0)=-1,即e=-1.
又f′(x)=4ax3+2cx,由题意知函数y=f(x)在点(1,0)的切线斜率为-2,
故f′(1)=-2且f(1)=0.
∴4a+2c=-2且a+c-1=0.可得a=-2,c=3.
∴f(x)=-2x4+3x2-1.
(2)由f(x)≤t(x2+1)恒成立,且x2+1恒大于0,
可得恒成立.
令,设x2+1=m,则m≥1,
∴=(当且仅当时,“=”号成立).
∴g(x)的最大值为,
故实数t的取值范围是.