满分5 > 高中数学试题 >

用0,1,2,3,4,5这六个数字: (1)可组成多少个无重复数字的自然数? (...

用0,1,2,3,4,5这六个数字:
(1)可组成多少个无重复数字的自然数?
(2)可组成多少个无重复数字的四位偶数?
(3)组成无重复数字的四位数中比4023大的数有多少?(要求算出最终结果)
(1)根据题意,分组成一位数、两位数、三位数、四位数、五位数、六位数、6种情况讨论,因首位数字不能为0,则每种情况下先分析首位数字的选法数目,再由排列公式分析其他位置的情况,由分步计数原理计算可得其自然数的个数;再由分类计数原理,将各种情况下的个数相加即可得答案. (2)由题意知,符合要求的四位偶数可分为三类:0在个位,2在个位,4在个位,对每一类分别计数再求它们的和即可得到无重复数字的四位偶数的个数; (3)当首位是5时,其他几个数字在三个位置上排列,当首位是4时,第二位从1,2,3,5四个数字中选一个,后两位没有限制,当前两位是40时,当前三位是403时,分别写出结果数,相加得到结果. 【解析】 (1)由题意知,分情况讨论: ①若组成一位数,有6种情况; ②若组成两位数,由于十位不为0,则十位有5种选择,个位也有5种选择,共5×5=25个; ③若组成三位数,由于百位不为0,则百位有5种选择,个位、十位有A52=20种选择,共5×20=100个; ④若组成四位数,由于千位不为0,则千位有5种选择,百位、个位、十位有A53=60种选择,共5×60=300个; ⑤若组成五位数,由于万位不为0,则万位有5种选择,其他位置有A54=120种选择,共5×120=600个; ⑥若组成六位数,由于首位不为0,则首位有5种选择,其他位置有A55=60种选择,共5×120=600个; 由分类计数原理可得,共有6+25+100+300+600+600=1631个; (2)第一类:0在个位时有A53个; 第二类:2在个位时,首位从1,3,4,5中选定1个(有A41种),十位和百位从余下的数字中选(有A42种),于是有A41A42个; 第三类:4在个位时,与第二类同理,也有A41A42个. 共有四位偶数:A53+A41A42+A41A42=156个. (3)当首位是5时,其他几个数字在三个位置上排列,共有A53=60, 当首位是4时,第二位从1,2,3,5四个数字中选一个,共有C41A42=48 当前两位是40时,第三位是3,最后一位三选一,共有A31=3种, 当前两位是40时,第三位是5,最后一位三选一,共有A31=3种, 当前三位是402时,第四位必须为5,有1种情况, 根据分类加法原理得到共有A35+A14A24+2A13+1=115
复制答案
考点分析:
相关试题推荐
数列{an}满足a1=1,manfen5.com 满分网
(1)求a1,a2,a3,a4,a5
(2)根据(1)猜想到数列{an}的通项公式,用数学归纳法证明你的结论.
查看答案
是否存在复数Z,使其满足等式manfen5.com 满分网,如果存在,求出Z的值;如果不存在,说明理由.
查看答案
用综合法或分析法证明:
(1)如果a>0,b>0,则manfen5.com 满分网
(2)求证:manfen5.com 满分网
查看答案
设(1+x)8=a+a1x+…+a8x8,则a,a1,…,a8中奇数的个数为    查看答案
方程3Ax3=2Ax+12+6Ax2的根为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.