满分5 > 高中数学试题 >

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中...

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n
本题考查的是数列求和问题.在解答时: (Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{an}的通项公式; (Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{bn}的通项进行化简,然后结合通项的特点,利用分组法进行数列{bn}的前2n项和的求解. 【解析】 (Ⅰ)当a1=3时,不符合题意; 当a1=2时,当且仅当a2=6,a3=18时符合题意; 当a1=10时,不符合题意; 所以a1=2,a2=6,a3=18, ∴公比为q=3, 故:an=2•3n-1,n∈N*. (Ⅱ)∵bn=an+(-1)nlnan =2•3n-1+(-1)nln(2•3n-1) =2•3n-1+(-1)n[ln2+(n-1)ln3] =2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3 ∴S2n=b1+b2+…+b2n =2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n]•(ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3 = =32n+nln3-1 ∴数列{bn}的前2n项和S2n=32n+nln3-1.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=manfen5.com 满分网,∠CDA=45°,求四棱锥P-ABCD的体积.
查看答案
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n12345
成绩xn7076727072
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=manfen5.com 满分网
(I) 求△ABC的周长;
(II)求cos(A-C)的值.
查看答案
已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n=    查看答案
过原点的直线与圆x2+y2-2x-4y+4=0相交所得的弦长为2,则该直线的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.