满分5 > 高中数学试题 >

已知椭圆的离心率为,右焦点为(,0),斜率为I的直线l与椭圆G交与A、B两点,以...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,右焦点为(manfen5.com 满分网,0),斜率为I的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(I)求椭圆G的方程;
(Ⅱ)求△PAB的面积.
(I)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2-c2求出b的值,即可求出椭圆G的方程; (II)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积. 【解析】 (I)由已知得,c=,, 解得a=,又b2=a2-c2=4, 所以椭圆G的方程为. (II)设直线l的方程为y=x+m, 由得4x2+6mx+3m2-12=0.① 设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x,y), 则x==-, y=x+m=, 因为AB是等腰△PAB的底边, 所以PE⊥AB, 所以PE的斜率k=, 解得m=2. 此时方程①为4x2+12x=0. 解得x1=-3,x2=0, 所以y1=-1,y2=2, 所以|AB|=3,此时,点P(-3,2). 到直线AB:y=x+2距离d=, 所以△PAB的面积s=|AB|d=.
复制答案
考点分析:
相关试题推荐
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=manfen5.com 满分网,∠CDA=45°,求四棱锥P-ABCD的体积.
查看答案
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n12345
成绩xn7076727072
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=manfen5.com 满分网
(I) 求△ABC的周长;
(II)求cos(A-C)的值.
查看答案
已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.