满分5 > 高中数学试题 >

已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且. (1...

已知函数f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且manfen5.com 满分网
(1)试求b,c所满足的关系式;
(2)若b=0,方程f(x)=g(x)在(0,+∞)有唯一解,求a的取值范围;
(3)若b=1,集合A={x|f(x)>g(x),g(x)<0},试求集合A;
(1)且得(-2b+4c)-(b+c)=-3,求出b,c所满足的关系式即可; (2)由b=0,b-c-1=0,可得c=-1,因为方程f(x)=g(x),即ax-3=-x-2,可化为a=3x-1-x-3,令x-1=t则由题意可得,a=3t-t3在(0,+∞)上有唯一解.令h(t)=3t-t3(t>0),求出h'(t)解出t,分区间讨论函数的增减性,得到函数的极大值,得到a的取值范围即可; (3)由b=1解出c,则集合A={x|f(x)>g(x)且且x<0}={x|ax2-3x-1<0且x<0},讨论a的取值来决定A中的元素即可得到A. 【解析】 (1)由,得(-2b+4c)-(b+c)=-3, ∴b,c所满足的关系式为b-c-1=0. (2)由b=0,b-c-1=0,可得c=-1,因为方程f(x)=g(x),即ax-3=-x-2,可化为a=3x-1-x-3,令x-1=t 则由题意可得,a=3t-t3在(0,+∞)上有唯一解. 令h(t)=3t-t3(t>0),由h'(t)=3-3t2=0,可得t=1, 当0<t<1时,由h'(t)>0,可知h(t)是增函数; 当t>1时,由h'(t)<0,可知h(t)是减函数,故当t=1时,h(t)取极大值2; 由函数h(t)的图象可在,当a=2或a≤0时,方程f(x)=g(x)有且仅有一个正实数解. 故所求a的取值范围为{a|a=2或a≤0}. (3)由b=1,b-c-1=0,可得c=0,A={x|f(x)>g(x)且 且x<0}={x|ax2-3x-1<0且x<0}, 当a>0时,; 当a=0时,; 当时,(△=9+4a<0),A=(-∞,0); 当时,A={x|x<0且; 当时,.
复制答案
考点分析:
相关试题推荐
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=manfen5.com 满分网
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
查看答案
已知函数manfen5.com 满分网
(1)求f(t)的值域G
(2)若对G内的所有实数x,不等式-x2+2mx-m2+2m≤1恒成立,求实数m的取值范围.
查看答案
已知函数f(x)=kx+b的图象与x,y轴分别相交于点A(-2,0),B(0,2),函数g(x)=x2-x-6.(1)求k,b的值;(2)当x满足f(x)>g(x)时,求函数manfen5.com 满分网的最小值.
查看答案
求实数m的取值组成的集合M,使m∈M时“p或q”为真,“p且q”为假,其中P:∀x∈R,mx2+2x+1≥0,q:∃x∈R,4x2+4(m-2)x+1=0.
查看答案
设函数f(x)=x3-2ex2+mx-lnx,记manfen5.com 满分网,若函数g(x)至少存在一个零点,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.