满分5 > 高中数学试题 >

下列各数中:,,0i,5i+8,,0.618纯虚数的个数有( ) A.0个 B....

下列各数中:manfen5.com 满分网manfen5.com 满分网,0i,5i+8,manfen5.com 满分网,0.618纯虚数的个数有( )
A.0个
B.1个
C.2个
D.3个
依据纯虚数的定义,把所给的选项中的各数中满足形如bi(b≠0)的数找出来,即得纯虚数的个数. 【解析】 ∵2+是实数;  i是纯虚数;   0i=0 是实数; 5i+8是虚数但不是纯虚数; i(1-)是纯虚数; 0.618是实数, 故纯虚数只有 i 和i(1-), 故选 C.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,对于任意n∈N*,an=4an3-3an
(1)求证:若|an|>1,则|an+1|>1;
(2)若存在正整数m,使得am=1,求证:
(ⅰ)|am|≤1;
(ⅱ)manfen5.com 满分网(其中k∈Z)(参考公式:cos3α=4cos3α-3cosα).
查看答案
某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为manfen5.com 满分网.该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:
市场情形概率价格p与产量q的函数关系式
0.4p=164-3q
0.4p=101-3q
0.2p=70-3q
设L1,L2,L3分别表示市场情形好、中差时的利润,随机变量ξk,表示当产量为q,而市场前景无法确定的利润.
(I)分别求利润L1,L2,L3与产量q的函数关系式;
(II)当产量q确定时,求期望Eξk,试问产量q取何值时,Eξk取得最大值.
查看答案
从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中男生的人数.
(1)求3人中恰有1名女生的概率;
(2)求3人中至少有1名男生的概率;
(3)求“所选3人中男生人数ξ的数学期望.
查看答案
甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为b,乙能攻克的概率为c,丙能攻克的概率为z=(b-3)2+(c-3)2
(Ⅰ)求这一技术难题被攻克的概率;
(Ⅱ)现假定这一技术难题已被攻克,上级决定奖励z=4万元.奖励规则如下:若只有1人攻克,则此人获得全部奖金x2-bx-c=0万元;若只有2人攻克,则奖金奖给此二人,每人各得a∈1,2,3,4万元;若三人均攻克,则奖金奖给此三人,每人各得manfen5.com 满分网万元.设甲得到的奖金数为X,求X的分布列和数学期望.
查看答案
设二项展开式Cn=(manfen5.com 满分网+1)2n-1(n∈N*)的整数部分为An,小数部分为Bn
(1)计算C1B1,C2B2的值;
(2)求CnBn
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.