满分5 > 高中数学试题 >

f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)...

f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( )
A.f(x)=g(x)
B.f(x)=g(x)=0
C.f(x)-g(x)为常数函数
D.f(x)+g(x)为常数函数
先根据导数的运算法则将f′(x)=g′(x)转化为[f(x)-g(x)]′=0,然后由函数的求导法则可得答案. 【解析】 由f′(x)=g′(x),得f′(x)-g′(x)=0, 即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数). 故选C.
复制答案
考点分析:
相关试题推荐
在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则|AB|2+|AC|2=|BC|2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得”( )
A.|AB|2+|AC|2+|AD|2=|BC|2+|CD|2+|BD|2
B.S2△ABC×S2△ACD×S2△ADB=S2△BCD
C.S△ABC2+S△ACD2+S△ADB2=S△BCD2
D.|AB|2×|AC|2×|AD|2=|BC|2×|CD|2×|BD|2
查看答案
manfen5.com 满分网如果函数y=f(x)的图象如图,那么导函数y=f′(x)的图象可能是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )
A.假设至少有一个钝角
B.假设没有一个钝角
C.假设至少有两个钝角
D.假设没有一个钝角或至少有两个钝角
查看答案
曲线y=manfen5.com 满分网在点(1,-1)处的切线方程为( )
A.y=x-2
B.y=-3x+2
C.y=2x-3
D.y=-2x+1
查看答案
若直线l的方向向量为manfen5.com 满分网,平面α的法向量为manfen5.com 满分网,则( )
A.l∥α
B.l⊥α
C.l⊂α
D.l与α斜交
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.