(1)连接BE,由已知中DC=2AD=2AB,AD⊥DC,我们易得四边形DABE为正方形,进而可证得四边形A1D1EB为平行四边形,则D1E∥A1B,由线面平行的判定定理,可得D1E∥平面A1BD;
(2)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设DA=1,求出平面A1BD的一个法向量和平面C1BD的一个法向量,代入向量夹角公式,即可得到二面角A1-BD-C1的余弦值.
(3)由(2)中的平面A1BD的一个法向量,代入点到平面距离公式,即可求出点C到面A1BD的距离.
证明:(1)连接BE,则四边形DABE为正方形,
∴BE=AD=A1D1,且BE∥AD∥A1D1,
∴四边形A1D1EB为平行四边形,∴D1E∥A1B.
∵D1E⊄平面A1BD,A1B⊂平面A1BD,∴D1E∥平面A1BD.
【解析】
(2)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设DA=1,
则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2).
∴.
设为平面A1BD的一个法向量,
由得,取z=1,则.
设为平面C1BD的一个法向量,
由得,取z1=1,则..
由于该二面角A1-BD-C1为锐角,所以所求的二面角A1-BD-C1的余弦值为.
(3)∵C(0,2,0),∴.
∴点C到面A1BD的距离.