满分5 > 高中数学试题 >

某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立...

某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.( 例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为manfen5.com 满分网,路段CD发生堵车事件的概率为manfen5.com 满分网).
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;
(2)若记ξ路线A→(3)C→(4)F→(5)B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.

manfen5.com 满分网
(1)记路段MN发生堵车事件为MN,根据各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1=1-P(••),同理得路线A→C→F→B中遇到堵车的概率P2= 1-P(••),路线A→E→F→B中遇到堵车的概率P3=1-P(••),然后比较即可; (2)路线A→C→F→B中遇到堵车次数ξ可取值为0,1,2,3,然后利用互斥事件与对立事件的公式分别求出相应的概率,最后利用数学期望公式解之即可. 【解析】 (1)记路段MN发生堵车事件为MN. 因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为1-P(••)=1-P()•P()•P () =1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-=; 同理:路线A→C→F→B中遇到堵车的概率P2为 1-P(••)=(小于); 路线A→E→F→B中遇到堵车的概率P3为 1-P(••)=(大于) 显然要使得由A到B的路线途中发生堵车事件的概率最小,只可能在以上三条路线中选择. 因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小. (2)路线A→C→F→B中遇到堵车次数ξ可取值为0,1,2,3. P(ξ=0)=P(••)=, P(ξ=1)=P(AC••)+P(•CF•)+P(••FB) =××+××+××=, P(ξ=2)=P(AC•CF•)+P(AC••FB)+P(•CF•FB) =××+××+××=, P(ξ=3)=P(••)=××=. ∴Eξ=0×+1×+2×+3×=. 答:路线A→C→FB中遇到堵车次数的数学期望为.
复制答案
考点分析:
相关试题推荐
某车站每天8:00~9:00,9:00~10:00都恰有一辆客车到站,8:00~9:00到站的客车A可能在8:10,8:30,8:50到站,其概率依次为manfen5.com 满分网;9:00~10:00到站的客车B可能在9:10,9:30,9:50到站,其概率依次为manfen5.com 满分网
(1)旅客甲8:00到站,设他的候车时间为ξ,求ξ的分布列和Eξ;
(2)旅客乙8:20到站,设他的候车时间为η,求η的分布列和Eη.
查看答案
manfen5.com 满分网如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>manfen5.com 满分网时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可).
查看答案
某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率.
查看答案
如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.
(1)在△ABC中,AB=______
(2)当x=______时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.

manfen5.com 满分网 查看答案
已知:向量manfen5.com 满分网=(sinθ,1),向量manfen5.com 满分网,-manfen5.com 满分网<θ<manfen5.com 满分网
(1)若manfen5.com 满分网,求:θ的值;
(2)求:manfen5.com 满分网的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.