满分5 > 高中数学试题 >

Y已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非...

Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
思路一:“按题索骥”--解不等式,求否命题,再根据充要条件的集合表示进行求解; 思路二:本题也可以根据四种命题间的关系进行等价转换,然后再根据充要条件的集合表示进行求解. 【解析】 解法一:由p:|-|≤2,解得-2≤x≤10, ∴“非p”:A={x|x>10或x<-2}、(3分) 由q:x2-2x+1-m2≤0,解得1-m≤x≤1+m(m>0) ∴“非q”:B={x|x>1+m或x<1-m,m>0=(6分) 由“非p”是“非q”的必要而不充分条件可知:B⊆A.解得m≥9. ∴满足条件的m的取值范围为{m|m≥9}.(12分) 解法二:由“非p”是“非q”的必要而不充分条件.即“非q”⇒“非p”,但“非p”“非q”,可以等价转换为它的逆否命题:“p⇒q,但qp”.即p是q的充分而不必要条件. 由|1-|≤2,解得-2≤x≤10, ∴p={x|-2≤x≤10} 由x2-2x+1-m2>0,解得1-m≤x≤1+m(m>0) ∴q={x|1-m≤x≤1+m,m>0} 由p是q的充分而不必要条件可知: p⊆q⇔解得m≥9. ∴满足条件的m的取值范围为{m|m≥9}.
复制答案
考点分析:
相关试题推荐
若p1p2=2(q1+q2),证明:关于x的方程x2+p1x+q1=0与方程x2+p2x+q2=0中,至少有一个方程有实数根.
查看答案
已知p:|5x-2|>3,q:manfen5.com 满分网≥0,试判断非p是非q的什么条件?写出判断的理由.
查看答案
命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.
查看答案
已知下列命题:①“若x2+y2=0,则实数x、y全为零”的逆否命题;②“矩形是平行四边形”的逆命题;③“若m>2,则x2-2x+m>0的解集为R”的逆否命题;④“若a>b,则ac2>bc2”的逆命题.⑤把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移manfen5.com 满分网个单位即可得到函数manfen5.com 满分网(x∈R)的图象其中真命题是    (只写序号) 查看答案
如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子它落在阴影区域内的概率为manfen5.com 满分网,则阴影区域的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.