满分5 > 高中数学试题 >

若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,...

若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象. 【解析】 ∵函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是奇函数 则f(-x)+f(x)=0 即(k-1)(ax-a-x)=0 则k=1 又∵函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上是增函数 则a>1 则g(x)=loga(x+k)=loga(x+1) 函数图象必过原点,且为增函数 故选C
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网的最小值为( )
A.1
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若集合A={x|x2-5x+4<0},B={x||x-a|<1},则“a∈(2,3)”是“B⊆A”的( )
A.充分但不必要条件
B.必要但不充分条件
C.充要条件
D.既不充分又不必要条件
查看答案
已知命题“p:∀x∈[1,2],x2-a≥0”命题q:“∃x>0,x2+2ax+2-a=0”是否存在实数a,使“命题p∧q”为真命题,若存在,求a的取值范围,若不存在,请说明理由.
查看答案
已知命题P:函数f(x)=log2m(x+1)是增函数;命题Q:∀x∈R,x2+mx+1≥0.
(1)写出命题Q的否命题¬Q;并求出实数m的取值范围,使得命题¬Q为真命题;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.
查看答案
Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.