(Ⅰ)本题是关于等差数列的基本量的运算,设出题目中的首项和公差,根据第十一项和前十四项的和两个数据列出方程组,解出首项和公差的值,写出数列的通项.
(Ⅱ)根据三个不等关系,写出关于首项和公差的不等式组,解不等式组,得到一个范围,根据{an}的首项a1及公差d都为整数得到所有可能的结果,写出通项公式.
【解析】
(Ⅰ)由S14=98得2a1+13d=14,
又a11=a1+10d=0,
∴解得d=-2,a1=20.
∴{an}的通项公式是an=22-2n,
(Ⅱ)由
得
即
由①+②得-7d<11.
即d>-.
由①+③得13d≤-1
即d≤-
于是-<d≤-
又d∈Z,故
d=-1 ④
将④代入①②得10<a1≤12.
又a1∈Z,故a1=11或a1=12.
∴所有可能的数列{an}的通项公式是
an=12-n和an=13-n,