满分5 > 高中数学试题 >

已知函数,其中m∈R且m≠o. (1)判断函数f1(x)的单调性; (2)若m<...

已知函数manfen5.com 满分网manfen5.com 满分网其中m∈R且m≠o.
(1)判断函数f1(x)的单调性;
(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(3)设函数manfen5.com 满分网当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.
(1)求出f1′(x),分m大于0和m小于0两种情况,令导函数大于0解出x的范围即为函数的增区间,令导函数小于0解出x的范围即为函数的减区间; (2)由m小于-2及-2≤x≤2得到x-m大于0,即可化简f2(x),然后分别把两个解析式代入得到f(x),根据(1)得到函数f1(x)在区间[-2,2]上为减函数,且f2(x)也为减函数,所以得到f(-2)最大,f(2)最小,分别求出值即可; (3)当m大于等于2时,x1∈[2,+∞)时得到g(x1)等于f1(x),g(x1)在[2,+∞)上是减函数得到,得到g(x1)的范围,同理,x2∈(一∞,2)时g(x2)等于f2(x),g(x2)在(-∞,2)上单调递增得到g(x2)的范围,根据g(x1)=g(x2)列出关于m的不等式,根据函数的单调性即可得到m的范围. 【解析】 (1)∵ 则当m>0时,在(-2,2)上函数f1(x)单调递增;在(-∞,-2)及(2,+∞)上单调递减. 当m<0时,在(-2,2)上函数f1(x)单调递减;在(-∞,-2)及(2,+∞)上单调递增; (2)由m<-2,-2≤x≤2,得x-m>0,则, ∴ 由(1)知,当m<-2,-2≤x≤2时,f1(x)在[-2,2]上是减函数,而在[-2,2]上也是减函数, ∴当x=-2时,f(x)取最大值4•,当x=2时,f(x)取最小值; (3)当m≥2时,, 由(1)知,此时函数g(x1)在[2,+∞)上是减函数, 从而g(x1)∈(0,f1(2)),即 若m≥2,由于x2<2, 则, ∴g(x2)在(-∞,2)上单调递增, 从而g(x2)∈(0,f2(2)) 即 要使g(x1)=g(x2)成立, 只需,即成立即可 由函数在[2,+∞)上单调递增, 且h(4)=0,得m<4, 所以2≤m<4
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知圆manfen5.com 满分网,经过椭圆manfen5.com 满分网(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)倾斜角为manfen5.com 满分网的直线1交椭圆于C,D两点
(1)求椭圆的方程
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
查看答案
在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足x2+y2≤4,从区域W中随机取点M(x,y);
(Ⅰ)若x∈Z,y∈Z,令ξ=x2+y2,求ξ的分布列与数学期望;
(Ⅱ)已知直线l:y=-x+b(b>0)与圆x2+y2=4相交所截得的弦长为2manfen5.com 满分网,求y≥-x+b的概率.
查看答案
已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求这个组合体的表面积;
(Ⅱ)若组合体的底部几何体记为ABCD-A1B1C1D1,其中A1B1BA为正方形、
(i)求证:A1B⊥平面AB1C1D;
(ii)是否存在棱A1D1上一点P,使直线AP与平面AB1C1D所成角为30°?
查看答案
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救、甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船.
(Ⅰ)求处于C处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线CB方向前往B处救援,其方向与manfen5.com 满分网成θ角,求manfen5.com 满分网(x∈R)的值域.

manfen5.com 满分网 查看答案
manfen5.com 满分网用α,β,γ三个字母组成一个长度为n+1(n∈N*)个字母的字符串,要求由α开始,相邻两个字母不同.例如n=1时,排出的字符串可能是αβ或αγ;n=2时排出的字符串可能是αβα,αβγ,αγα,αγβ(如图).若记这种n+1个字符串中,排在最后一个的字母仍是α的所有字符串的种数为an,可知,a1=0,a2=2;则a4=    ;数列{an}的前2n项之和a1+a2+a3+…+a2n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.