先根据抛物线方程求出焦点坐标,进而可设出直线方程,然后联立直线与抛物线消去y得到关于x的一元二次方程,根据韦达定理得到两根之和与两根之积,再由两点间的距离公式表示出|AB|,将得到的两根之和与两根之积即可得到答案.
【解析】
的焦点为(0,1),设过焦点(0,1)的直线为y=kx+1
则令kx+1=,即x2-4kx-4=0,由韦达定理得x1+x2=4k,x1x2=-4
y1=kx1+1,y2=kx2+1
所以y1+y2=k(x1+x2)+2=4k2+2=5,所以k2=,
所以|AB|=|x1-x2|===7.
故答案为7.