满分5 > 高中数学试题 >

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,...

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
(Ⅰ)求解析式,只需把a,b,d三个字母求出即可.已知点P(0,2)满足f(x),得到d,又点M(-1,f(-1))处的切线方程为6x-y+7=0,可以得到f(-1)的值,并且得到f(x)在x=-1处的导数为6. (Ⅱ)利用导数研究函数的单调性即可求出函数的单调区间. 【解析】 (Ⅰ)∵f(x)的图象经过P(0,2),∴d=2, ∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a. ∵点M(-1,f(-1))处的切线方程为6x-y+7=0 ∴f'(x)|x=-1=3x2+2bx+a|x=-1=3-2b+a=6①, 还可以得到,f(-1)=y=1,即点M(-1,1)满足f(x)方程,得到-1+b-a+2=1② 由①、②联立得b=a=-3 故所求的解析式是f(x)=x3-3x2-3x+2. (Ⅱ)f'(x)=3x2-6x-3.,令3x2-6x-3=0,即x2-2x-1=0. 解得.当; 当. 故f(x)的单调增区间为(-∞,1-),(1+,+∞);单调减区间为(1-,1+)
复制答案
考点分析:
相关试题推荐
已知三点P(5,2)、F1(-6,0)、F2(6,0).
(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;
(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.
查看答案
某制造商为2008年北京奥运会生产一批直径为40mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位mm,保留两位小数)如下:
40.03   40.00   39.98   40.00    39.99   40.00   39.98   40.01   39.98   39.99               
40.00   39.99   39.95   40.0l    40.02   39.98   40.00   39.99   40.00   39.96
(Ⅰ)完成下面的频率分布表,并画出频率分布直方图;
(Ⅱ)假定乒乓球的直径误差不超过0.02mm为合格品.若这批乒乓球的总数为10000只,试根据抽样检查结果估计这批产品的合格只数.

分   组
频数频率manfen5.com 满分网
[39.95,39.97)
[39.97,39.99)
[39.99,40.01)
[40.0l,40.03]
合计


manfen5.com 满分网 查看答案
袋子中有红、白、黄、黑、颜色不同大小相同的四个小球.
(1)从中任取一球,求取出白球的概率.
(2)从中任取两球,求取出的是红球、白球的概率.
(3)从中先后各取一球,求先后取出的分别是红球、白球的概率.
查看答案
已知动点A、B分别在图中抛物线y2=4x及椭圆manfen5.com 满分网的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是   
manfen5.com 满分网 查看答案
设命题p:|4x-3|≤1;命题q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.