满分5 > 高中数学试题 >

已知函数f(x)=(x-1)ln(1-x),则 (1)f(x)>0的解集为 ; ...

已知函数f(x)=(x-1)ln(1-x),则
(1)f(x)>0的解集为   
(2)f(x)的最大值为   
(1)先求出函数的定义域,(x-1)ln(1-x)>0时,考虑到定义域,有x-1<0,因此只需要解 ln(1-x)<0 即可; (2)本题利用导数来解答,先求出导函数,求出函数的单调增区间和减区间,得出函数在何时取到最大值. 【解析】 (1)由已知可得函数的定义域为:{x|x<1},所以x-1<0, 由f(x)=(x-1)ln(1-x)>0得ln(1-x)<0, 所以0<1-x<1,即0<x<1,所以f(x)>0的解集为:(0,1) (2)对函数求导数得:f′(x)=ln(1-x)+1,由f′(x)>0得, 因此函数f(x)在上是增函数,在上是减函数, 所以函数的最大值为:=[(1-)-1]ln[1-(1-)]=. 故答案为:(1)(0,1); (2)
复制答案
考点分析:
相关试题推荐
设集合A={x|manfen5.com 满分网∈Z,x∈N}则A=    查看答案
幂函数f(x)=(3-2m)manfen5.com 满分网,(m∈Z)当x>0时是减函数,则f(x)=    查看答案
4|x-2|dx=    查看答案
函数f(x)=manfen5.com 满分网的定义域为    查看答案
log535-log57的值为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.