如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=
,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为
?若存在,求出
的值;若不存在,请说明理由.
考点分析:
相关试题推荐
4男3女坐一排.
(1)甲乙俩人必须相邻,有多少种排法?
(2)甲乙俩人不相邻,有多少种排法?
(3)甲乙两人必须相隔一人,有多少种排法?
(4)4男必须相邻,3女必须相邻,有多少种排法?
(5)甲在乙左边,有多少种排法?
查看答案
如图,正四棱柱ABCD-A
1B
1C
1D
1中,AA
1=2AB=4,点E在CC
1上且C
1E=3EC.
(Ⅰ)证明:A
1C⊥平面BED;
(Ⅱ)求二面角A
1-DE-B的大小.
查看答案
在100件产品中有98件合格品,2件次品.产品检验时,从100件产品中任意抽出3件.
(1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
查看答案
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当
且E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案
的展开式中第四项的二项式系数和第四项的系数.
查看答案