满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=,底面A...

如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=manfen5.com 满分网,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为manfen5.com 满分网?若存在,求出manfen5.com 满分网的值;若不存在,请说明理由.

manfen5.com 满分网
法一:(Ⅰ)证明直线PO⊥平面ABCD,因为平面PAD⊥底面ABCD,只需证明面PAD内的直线PO垂直这两个平面的交线即可即; (Ⅱ)连接BO,说明∠PBC是异面直线PB与CD所成的角,然后解三角形,求异面直线PD与CD所成角的大小; (Ⅲ)线段AD上存在点Q,设QD=x,利用等体积方法,求出比值. 法二:建立空间直角坐标系,求出向量. 利用向量数量积解答(Ⅱ);利用平面的法向量和数量积解答(Ⅲ)即可. 【解析】 (Ⅰ)证明:在△PAD中,PA=PD,O为AD的中点,所以PO⊥AD 又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD 所以PO⊥平面ABCD. (Ⅱ)连接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC=2有OD∥BC 且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC 由(Ⅰ)知PO⊥OB,∠PBC是锐角, 所以∠PBC是异面直线PB与CD所成的角 因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB= 在Rt△AOP中  因为AP=AO=1,所以OP=1 在Rt△AOP中tan∠PBC= 所以:异面直线PB与CD所成角的大小. (Ⅲ)假设存在点Q,使得它到平面PCD的距离为. 设QD=x,则,由(Ⅱ)得CD=OB=, 在Rt△POC中,, 所以PC=CD=DP,, 由Vp-DQC=VQ-PCD,得x=,所以存在点Q满足题意,此时. 解法二: (Ⅰ)同解法一. (Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz, 依题意,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1), 所以. 所以异面直线PB与CD所成的角是arccos, (Ⅲ)假设存在点Q,使得它到平面PCD的距离为, 由(Ⅱ)知. 设平面PCD的法向量为n=(x,y,z). 则所以即x=y=z, 取x=1,得平面PCD的一个法向量为=(1,1,1). 设,由,得, 解y=-或y=(舍去), 此时,所以存在点Q满足题意,此时.
复制答案
考点分析:
相关试题推荐
4男3女坐一排.
(1)甲乙俩人必须相邻,有多少种排法?
(2)甲乙俩人不相邻,有多少种排法?
(3)甲乙两人必须相隔一人,有多少种排法?
(4)4男必须相邻,3女必须相邻,有多少种排法?
(5)甲在乙左边,有多少种排法?
查看答案
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)求二面角A1-DE-B的大小.

manfen5.com 满分网 查看答案
在100件产品中有98件合格品,2件次品.产品检验时,从100件产品中任意抽出3件.
(1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当manfen5.com 满分网且E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案
manfen5.com 满分网的展开式中第四项的二项式系数和第四项的系数.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.