(Ⅰ)先寻找异面直线PD与EC的公垂线,由三垂直线定理的逆定理知EC⊥DE,从而DE是异面直线PD与EC的公垂线,最后根据△DAE∽△CED,求出DE,从而求出异面直线PD与EC的距离;
(Ⅱ)过E作EG⊥CD交CD于G,作GH⊥PC交PC于H,连接EH.根据二面角平面角的定义可知∠EHG为二面角的平面角,在直角三角形EHG中求出此角即可得到二面角E-PC-D的大小.
【解析】
(Ⅰ)因PD⊥底面AD,故PD⊥DE,又因EC⊥PE,
且DE是PE在面ABCD内的射影,由三垂直线定理的逆定理知
EC⊥DE,因此DE是异面直线PD与EC的公垂线.
设DE=x,因△DAE∽△CED,故x:=2:x.
从而DE=1,即异面直线PD与EC的距离为1.
(Ⅱ)过E作EG⊥CD交CD于G,作GH⊥PC交PC于H,连接EH.因PD⊥底面AD,
故PD⊥EG,从而EG⊥面PCD.
因GH⊥PC,且GH是EH在面PDC内的射影,
由三垂线定理知EH⊥PC.
因此∠EHG为二面角的平面角.
在面PDC中,PD=,CD=2,GC=,
因△PDC∽△GHC,故,
又,
故在,
即二面角E-PC-D的大小为.