登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
求圆心在直线2x+y=0上,且与直线x+y-3=0相切,半径为2的圆方程.
求圆心在直线2x+y=0上,且与直线x+y-3=0相切,半径为2
的圆方程.
设所求圆方程为(x-a)2+(y-b)2=8,由圆心在直线2x+y=0可得a,b之间的关系,再由圆与直线x+y-3=0相切.利用d=r可得a,b之间的关系,从而可求a,b进而可求圆的方程 【解析】 设所求圆方程为(x-a)2+(y-b)2=8, 依题有,消b得|a+3|=4, ∴或, ∴所求圆方程为 (x-1)2+(y+2)2=8或(x+7)2+(y-14)2=8.
复制答案
考点分析:
相关试题推荐
已知两直线l
1
:ax-by+4=0,l
2
:2x+y+2=0,求满足下列条件的a、b的值.
(1)直线l
1
过点(-3,-1),且直线l
1
在x轴和y轴上的截距相等;
(2)直线l
1
与l
2
平行,且坐标原点到直线l
1
、l
2
的距离相等.
查看答案
锐角△ABC的面积为3
,BC=4,CA=3,则AB=
.
查看答案
中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为
,则双曲线方程为
.
查看答案
椭圆的两焦点将其长轴三等分,则椭圆的离心率e=
.
查看答案
若抛物线y
2
=4x上的点P(x
,y
)到该抛物线的焦点距离为6,则点P的横坐标x
=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.