函数对于n∈N*,定义fn+1(x)=f1[fn(x)],故f2(x)=f1[f1(x)]=f1()=.f3(x)=f1()=,f4(x)=f1()=,f5(x)=f1()=,f6(x)=f1()=x,f7(x)=f1(x)=.所以从f1(x)到f6(x),每6个一循环.由此能求出结果.
【解析】
∵函数对于n∈N*,定义fn+1(x)=f1[fn(x)],
∴f2(x)=f1[f1(x)]=f1()==.
f3(x)=f1[f2(x)]=f1()==,
f4(x)=f1[f3(x)]=f1()==,
f5(x)=f1[f4(x)]=f1()==,
f6(x)=f1[f5(x)]=f1()==x,
f7(x)=f1[f6(x)]=f1(x)==f1(x).
所以从f1(x)到f6(x),每6个一循环.
∵2011=335×6+1,
∴f2011(x)=,
故答案为:.